γ -SILYLATED α , β -UNSATURATED AMIDES. FORMATION BY [1,5] SILICON MIGRATION FROM O-SILYLATED VINYL KETENE AMINALS AND FLUORIDE- AND LEWIS ACID-MEDIATED ALDOL CONDENSATIONS

J.R. Green, M. Majewski, B.I. Alo and V. Snieckus* Guelph-Waterloo Centre for Graduate Work in Chemistry University of Waterloo, Waterloo, Canada N2L 3G1

Abstract: 0-Silylated vinyl ketene aminal **2**, obtained from lithiated unsaturated amide **1**, undergoes a thermal [1,5] silicon migration to give γ -silylated product **3b** which participates in fluoride- and titanium tetrachloride-mediated aldol condensations to give adducts **5** in poor and excellent **syn** diastereoselectivity respectively.

Among allylic organometallic reagents,¹ allyl silanes have emerged as versatile intermediates for C-C bond forming reactions featuring high reactivity and regio- and stereo-selectivity with a variety of carbon electrophiles.² To date, the reactivity of allyl silanes which incorporate interacting functional groups has received scant attention.³ As a continuation of our methodological studies in metalated α , β -unsaturated amides,⁴ we report on a) the preparation of 0-silylated vinyl ketene aminal 2⁵ and its stereoselective [1,5] sigmatropic silicon rearrangement into the $\gamma(\underline{Z})$ -silylated amide **3b** ⁶ and b) the Lewis acid⁷- and fluoride⁸-mediated condensation of **3b** with carbonyl compounds to give α - and γ -substituted products, **5** and **6**. These results further augment the position of unsaturated amides as attractive synthetic intermediates.

a: R = Ph; b: R = 3,4-(MeO)₂C₆H₃; c: R = 4-NO₂C₆H₄; d: R = 4-pyridyl; e: R = <u>n</u>-Pr; f: R = Et; g: R = Me₂CH

Standard metalation⁴ of the senecioamide 1 followed by treatment with TMSC1 and non-aqueous workup gave the 0-silylated product 2. Reaction with dimethyl acetylene dicaboxylate afforded the phthalate ester 4. Refluxing a THF solution of 2 resulted in a [1,5] sigmatropic silicon migration to give 3b and 3a in a ratio of 91:9 in 74% yield.⁹

Е ⁺	Conditions ^a	Product ^b	Yield,% ^C	Ratio	
				(5)syn:anti	(6)Z:E
PhCHO	A	5a/6a	69	44:48	8:0
PhCHO	В	6a	72	-	80:20
3,4-(0Me) ₂ CH ₆ C ₃ HO	Α	5b/6b	58	43:46	11:0
$3, 4-(0Me)_{2}C_{6}H_{3}CHO$	В	5b	75	-	65:35
4-N02-C6H4CH0	А	5c/6c	85	29:36	35:0
4-N02-C6H4CH0	В	5c/6c	80	27:33	40:0
Pyridine-4-CHO	Α	5d/6d	74	37:46	17:0
Pyridine-3-CHO	В	6 d	70	-	81:19

Table 1. Fluoride-Induced Reaction of 3b with Aromatic Aldehydes

^a A: 1.2 equiv. ArCHO/100 mol % TBAF/-45°C/2 min; B: 1.2 equiv. ArCHO/5 mol % TBAF/-78°C→RT/15-20 h followed by saturated aq NH4Cl work up. ^b All products were characterized by direct comparison with authentic materials (ref. 4). ^c Of chromatographically (silica gel, EtOAc-hexane) pure materials.

Electrophile	Product ^b	Yield,% ^C	Ratio ^d syn:anti	
PhCH0	5a	62	97:3	
3,4-(0Me) ₂ C ₆ H ₃ CHO	5 b	47	70:30	
4-N02-C6H4CHO	5 c	74	99:1	
n-PrČHO	5e	65	96:4	
E tCHO	5f	25	97:3	
Me ₂ CHCHO	5g	68	59:41	

Table 2. TiCl₄-Mediated Condensation of 3b with Carbonyl Electrophiles^a

^a Typical procedure: To a solution of carbonyl compound (1 equiv) and TiCL₄ (1 equiv) in anhydrous CH₂Cl₂ at -78° was added **3b** in CH₂Cl₂. After stirring for 2 h at -78°, the solution was warmed to room temperature over 8-12 h and worked up conventionally. ^b See footnote b, **Table 1.** ^c See footnote c, **Table 1.** ^d Established by glc analysis.

Treatment of **3b** with benzaldehyde (THF/RT/15 h) in the presence of TBAF (5 mole %) followed by aq NH₄Cl quench (thermodynamic control) led to the formation of γ -alkylated products **6a** favoring the $\gamma(Z)$ -isomer **(Table 1)**. Under kinetic conditions (THF/-45°C/2 min/-100 mole % TBAF), this reaction led predominantly to α -alkylated products **5** in fair yield but with essentially no diastereoselectivity. The observed behaviour in α : γ regioselectivity but not in α -diastereoselectivity is reminiscent of that observed for the reaction of lithiated **1** with PhCH0.⁴ Reaction of **3b** with other aromatic aldehydes provided similar results. Yields of products using veratraldehyde and p-N0₂-benzaldehyde reflect the expected substituent electronic effects on the position of the mobile equilibrium.¹⁰ Aliphatic aldehydes failed to provide condensation products.

Thus the fluoride-induced nucleophilic reactivity of **3b** is low relative to simple allyl silanes **2c.** In the proposed mechanism (**Scheme**), the tetra-n-butylammonium dienolate resulting from **3b** undergoes reaction with the aldehyde via acyclic, extended transition states **7** and **8** of similar energy requirements in contrast to the analogous quaternary ammonium fluoride- or tris(dialkylamino)sulfonium fluoride-catalyzed aldol condensation of silyl enolates with carbonyl compounds.¹⁰ In contrast to these kinetic control conditions, thermodynamic control (\div RT/15-20 h) resulted in the predominant formation of γ -substituted products **6** favouring the $\gamma(Z)$ -isomers. These results strongly suggest that isomer distribution is dependent upon retroaldol processes analogous to those reported for quaternary ammonium enolates.¹⁰,11

On the other hand, when **3b** was subjected to TiCl4-mediated condensation with PhCHO, **5a** was obtained as a **syn:anti** mixture showing high **syn** diastereoselectivity (**Table 2**). This ratio contrasts sharply with that (**syn:anti** = 29:71) obtained for the reaction of lithiated **1** with PhCHO under kinetic control conditions.⁴ Similar predominantly **syn** stereoselectivity was observed for reactions of **3b** with other carbonyl compounds (**Table 2**).

The generally high **syn** diastereoselectivity for the formation of **5** agrees with that obtained for the reaction of simple allyl silanes with aldehydes.^{2e} Several indirected paths to **5** can be ruled out or are unlikely: a) reaction of the silylated vinyl ketene aminal **2** with PhCHO under the same conditions leads to poor diastereoselectivity **(5a, syn:anti** = 60:40, 45% yield) making it unlikely that **5a** is formed by C to O silicon migration under the influence of TiCl4; b) the order of mixing of reagents **5a**, TiCl4, and PhCHO is immaterial thus raising the possibility of a titanium dienolate.¹² However, the reaction of PhCHO with the titanium dienolate, prepared from **2** according to Kuwajima,¹² resulted in the formation of oligomeric materials and only trace amounts of condensation products; c) 1,3 silicon migration to an α -silylated β , γ -unsaturated amide should yield only γ -substituted product **6** by analogy with the reaction of corresponding α -silylated β , γ -unsaturated ester with carbonyl electrophiles.^{3a}

While a precise mechanism for the TiCl₄-catalyzed aldol coupling of **3b** with carbonyl compounds cannot be formulated, ¹³ a working hypothesis based on the strong affinity of titanium for oxygen¹³ and the intramolecular transfer of chloride to silicon^{8a}, ¹⁴ may account for the observed stereoselectivity. Examination of the cyclic transition states **9** and **10** shows that the latter suffers from steric repulsion between R = Ph and NMe₂ groups (1, 3-diaxial interaction). **9** is therefore favoured and leads to the **5-syn** isomer. Consonant with

this hypothesis, the E-silylated amide **3a** under identical conditions undergoes a sluggish, incomplete reaction with PhCHO to give **5a-syn** in 12% yield (no **5a-anti, 51%** recovered starting material). The diminished diastereoselectivity when R = i - Pr (Table 2) stems from unknown origin, but has been observed in similar condensations.^{8a}

Stereoselective C-C bond formation and regiospecific γ -functionalization using silvlated viny! ketene aminals 2 constitute complementary methodologies to that derived from metalated unsaturated amides⁴ and underscores the increasing utility of silicon functionality in synthesis, 15, 16

References and Footnotes

- Yamamoto, Y.; Maruyama, K. Heterocycles, 1982, 18, 357; Hoffman, R.W. Angew. Chem. 1. Internat. Edit. Engl. 1982, 21, 555; Denmark, S.E.; Weber, E.J. J. Am. Chem. Soc. 1984, 106, 7970 and refs. cited therein.
- a) Weber, W.P. "Silicon Reagents for Organic Synthesis", Springer-Verlag, 2. a) Weber, W.P. "Silicon Reagents for Organic Synthesis", Springer-Verlag, Berlin, 1983, p. 173; b) Colvin, E.W. "Silicon in Organic Synthesis," Butterworths, London, 1981, p. 97; c) Sakurai, H. Pure Appl. Chem. 1982, 54, 1. Mechanistic aspects:
 d) Fleming, I.; Terrett, N.K., ibid. 1983, 55, 1707; e) Hayashi, T.; Konishi, M. Kumada, M. J. Am. Chem. Soc. 1982, 104, 4963.
 a) Albaugh-Robertson, P.; Katzenellenbogen, J.A. J. Org. Chem. 1983, 48, 5288 and refs. cited therein; b) Chan, T.H.; Kang, G.J. <u>Tetrahedron Lett.</u> 1982, 3011; c) Nishiyama, H.; Itagaki, K.; Takahashi, K.; Itoh, K. ibid. 1981, 1691. Majewski, M.; Mpango, G.B.; Thomas, M.T.; Wu, A.; Snieckus, V. J. Org. Chem. 1981, 46, 2029
- 3.
- 4. 2029.
- 5. Vinyl ketene aminals are sparsely studied substances, see Gillard, M.; T'Kint, C.; Sonveaux, E.; Ghosez, L. J. Am. Chem. Soc. 1979, 101, 5837. The corresponding acetals are synthetically useful intermediates, see Roberge, G.; Brassard, P. J. Org. Chem. 1981, 46, 4161; Cameron, D.W.; Conn, C.; Feutrill, G.I. Austr. J. Chem. 1981, 34, 1945; Brownbridge, P.; Chan, T.H. Tetrahedron, 1981, 37, 387 and refs. cited in these papers.
- 6. The analogous rearrangement of 0-silylated vinyl ketene acetals is known: Casey, C.P.; Jones, C.R.; Tukada, H. J. Org. Chem. **1981**, 46, 2089; Anderson, G.; Cameron, D.W.; Feutrill, G.I.; Read, R.W. Tetrahedron Lett. **1981**, 4347; Brook, P.R.; Devadas, B.; Sammes, P.G. J. Chem. Res(S). **1982**, 134.
- Reviews: Mukaiyama, T.; Org. React. **1982**, 26, 203; Reetz, M.T. <u>Angew. Chem. Internat.</u> <u>Edit. Engl.</u> **1982**, 21, 96. <u>Related work on:</u> a) 0-silylated ketene S,N-acetals: Goasdoue, C.; Goasdoue, N.; 7.
- 8. Gaudemar, M. J. Organometal. Chem. 1984, 263, 273; b) α -silylated 3-aminocrotonate esters: ref. 3b. c) α -silylated β , γ -unsaturated esters: ref. 3a.
- This reaction has been shown to be intramolecular and has been generalized for a series of 9 silicon substituents. Details will be reported in the full paper.
- Nakamura, E.; Shimizu, M.; Kuwajima, I.; Sakata, J.; Yokoyama, K.; Noyori, R. <u>J. Org.</u> <u>Chem.</u> 1983, 48, 932; Noyori, R.; Nishida, I.; Sakata, J. <u>J. Am. Chem. Soc.</u> 1983, <u>105</u>, 1598 10.
- However, quaternary ammonium ketene S,N-acetals generated from the corresponding 11. S-silylated derivatives by TBAF show high **syn** to **anti** diastereoselectivity in reactions with ArCHO: ref. 8a.
- For the generation and aldol reactions of trichlorotitanium enolates, see Nakamura, E.; 12. Shimada, J.-i.; Horiguchi, Y.; Kuwajima, I. Tetrahedron Lett. **1983,** 3341 and refs. therein.
- The mechanism of the TiCl4-catalyzed cross aldol itself is poorly understood, see ref.7. 13.
- 14. El-Abed, D.; Jellal, A.; Santelli, M. Tetrahedron Lett. 1984, 1463. All compounds show analytical and spectroscopic (IR, NMR, MS) data consistent with the
- 15. assigned structures.
- We are grateful to NSERC Canada for continuing financial support. J.G. and B.I.A. thank 16. NSERC for a 1967 Science Scholarship and a CIDA Fellowship respectively. B.I.A. also thanks the University of Lagos, Nigeria for a leave of absence.

(Received in USA 4 September 1985)